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A criterion for the reaction mechanism as expressed by differential conversion function
based on the Li and Tang’s isoconversional method is suggested. The suitability of the use
of Li and Tang’s method for the estimation of a conversion dependent activation energy is
discussed. C© 2001 Kluwer Academic Publishers

1. Introduction
Thermal analysis methods are widely used to investi-
gate the thermal and/or thermooxidative degradation of
materials. These methods allow us to put in evidence
the processes occurring at the progressive heating of
a given material. In many cases the nonisothermal ki-
netic parameters which can be used for the prediction
of thermal endurance are estimated.

Recently [1–3] Li and Tang suggested a new iso-
conversional method for the analysis of non-isothermal
thermoanalytical data. Li and Tang start from the clas-
sical rate equation:

dα

dt
≡ β

dα

dT
= A f (α) exp

(
− E

RT

)
(1)

where α is the conversion degree, t—the time, T —
the reactant’s temperature, β—the linear heating rate,
A—the pre-exponential factor, E—the activation en-
ergy, R—the gas constant and f (α)—the differential
conversion function.

Integrating both side of the logarithmic form of Equa-
tion 1 with respect to α, we get:
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(
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)
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0

(
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)
dα = − E

R
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×
(
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)
dα + G(α) (2)

where:

G(α) ≡ α ln A +
∫ α

0
[ln f (α)] dα (3)

The plot of
∫ α

0 (ln dα
dt ) dα vs.

∫ α

0 ( 1
T ) dα for a given α

and a set of β values, should be linear. From the slope
of the straight line, the value of the activation energy
can be obtained.

Unlike other integral isoconversional methods, such
as Flynn-Wall-Ozawa (FWO) [4, 5] and Kissinger-
Akahira-Sunose (KAS) [6, 7] methods, Li and Tang
method (LT) [1–3] avoids the integration of the rate
equation and correspondingly the use of various ap-
proximations for the temperature integral. According
to Li and Tang, their method leads to errors lower
than those corresponding to Friedman’s method (FR)
[8] according to which the activation energy is de-
termined from the slope of the straight line ln dα

dt vs.
(1/T ), recorded for α = constant. Finally, Li and Tang’s
method does not require the knowledge of f (α) in or-
der to evaluate E and can equally show the dependence
of E on α.

In this paper we are going to analyze the possibility to
use Li and Tang’s procedure to find f (α) and A as well
as its suitability for the cases of dependence of E on α.

2. A criterion to determine the analytical
form of the differential conversion function

In a previous paper [9], some methods suggested by var-
ious authors used to find f (α) were analyzed. Besides,
in that work a procedure to find the analytical form of
f (α) was suggested. According to this procedure, the
correct value of the activation energy is obtained using
an isoconversional method. The correct analytical form
of f (α) is that for which through an integral or differen-
tial procedure applied to each TG curve the same value
of the activation energy is obtained. The main advan-
tage of this procedure consists in the fact that improper
analytical form of f (α) lead to significant differences
between the values of the activation energy. Obviously,
this criterion is suitable if E does not depend on α.
In order to apply this criterion, Li and Tang’s method
should be associated with a differential or an integral
procedure in such a way that a single TG curve could
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give a pair of (E, A) values for each considered differ-
ential conversion function.

In the following, a criterion for finding f (α) using
only Li and Tang’s method is going to be suggested.

By plotting the straight lines
∫ α

0 (ln dα
dt ) dα vs.∫ α

0 ( 1
T ) dα for a set of α values, the corresponding G(α)

values could be found. Various forms of f (α) will be
considered. For each of these forms, using relation (3)
the dependence ln A vs. α is obtained. Obviously, the
correct form of f (α) is that for which ln A does not
practically depend on α. It turns out that through the
application of this procedure, the triplet (E, A, f (α))
could be found.

3. On the use of Li and Tang’s method for
cases in which E depends on α

At the derivation of relation (2), as well as of all re-
lations which form the basis for the methods FWO
and KAS, the activation parameters (E and A) are
considered as independent of α. The only method of
E estimation that does not use this hypothesis is that
suggested by Friedman which uses directly the rate
equation (Equation 1). This is the reason for our con-
sideration that the methods FWO, KAS and LT are
not suitable for the estimation of an activation en-
ergy that changes with the conversion degree. In pre-
vious works [9, 10] we have shown that if E depends
on α, the integral methods lead to values of the ac-
tivation energy which differ from those estimated us-
ing Friedman’ method. The results reported by Li and
Tang [1–3] for CaCO3 and SrCO3 confirm this state-
ment. In these cases E depends on α and for each
value of α, EFR �= EFWO �= EKAS �= ELT. On the other
hand, it was shown [9, 10] that if E does not depend
on α, all the mentioned isoconversional methods give
close values of E . This result was obtained by Li and
Tang too [3] for the decomposition of CuO to Cu2O
and O2.

The use of Li and Tang’s procedure raises the prob-
lem of the lower integration limit. It is well known that
in many cases, for each TG curve, the determination
of the T value corresponding to α = 0 is susceptible to
rather high errors. The derivation of equation (2) does
not impose as lower limit of integration α = 0. This is
the reason for we can consider that the integration of
the logarithmic form of the rate equation with respect
to α could be performed between α1 and α:

∫ α

α1

(
ln

dα

dt

)
dα = − E

R

∫ α

α1

(
1

T

)
dα + G(α) (4)

where:

G(α) = (α − α1) ln A +
∫ α

α1

[ln f (α)] dα (5)

Obviously, if E does not depend on α, the values of
E obtained for various values of α1 should be equal.
Besides, in such cases relations (4) and (5) can be used
to determine the triplet (E, A, f (α)) by applying the
above suggested procedure.

The derivation of equation (4) is based on the sup-
position that E and A do not depend on α. But if the
activation parameters depend on α, the value of E de-
termined using Li and Tang’s procedure is intermedi-
ate between E(α1) and E(α). Thus it appears that for
a given α, the E value depends on the lower limit of
integration (α1). Under such conditions one can expect
that if E increases with α, ELT for a given α, increases
with (α1). Consequently, the position of the curve ELT
vs. α in the space (E, α) could be switched by chang-
ing the value of (α1). This dependence of ELT on the
lower limit of integration when E depends on α, de-
termines the irrelevancy of comparison between ELT
values and the values of the activation energy deter-
mined from non-isothermal data by help of other iso-
conversional methods (FR, FWO, KAS). In these cases,
the comparison between ELT values and the values of
the activation energy obtained from isothermal data is
irrelevantly, too.

4. Applications
The criterion for finding the analytical form of f (α) as
well as the observations concerning the application of
Li and Tang’s procedure were checked for:

a. simulated TG curves for a single reaction;
b. simulated TG curves for two consecutive reac-

tions;
c. TG curves obtained by Gotor et al. [11] for the

thermal dissociation of smithsonite.

4.1. Simulated TG curves for a
single reaction

The data were simulated for: f (α) = 1−α; E = 58.5 kJ ·
mol−1; A = 900 s−1, and for the heating rates: 0.15; 0.5;
1; 3; 5 and 10 K · min−1.

In order to estimate the activation energy the iso-
conversional methods Friedman, Flynn-Wall-Ozawa,
Kissinger-Akahira-Sunose and Li-Tang were applied.
For the use of Flynn-Wall-Ozawa method, the factor
1.052 was corrected according to the first procedure
suggested by Flynn [12] (two iterations). The Li and
Tang method was applied for α1 = 0; 0.05; 0.1; 0.2
and 0.3. All isoconversional methods gave values of
E which practically equal the value used to simulate
the TG curves. As was expected, the E value obtained
by Li and Tang method does not depend on the value
of α1.

In order to check the suggested criterion to find f (α),
the following differential conversion function:

f (α) = (1 − α)n (6)

with n = 0.7; 0.8; 0.9; 1; 1.1; 1.2; 1.3, was considered.
For α1 = 0.1, using relation (5), the values of ln A

were calculated for 0.15 ≤ α ≤ 0.95. Fig. 1 shows that
ln A is practically independent on α only for n = 1,
which corresponds to the differential conversion func-
tion used for TG curves simulations.
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Figure 1 Dependences ln A vs. α for various values of n and α1 = 0.1.

4.2. Simulated TG curves for two
consecutive reactions

Let us consider that the solid compound A undergoes
two decompositions:

A(s) → B(s) + ν1G1(g) (I)

B(s) → C(s) + ν2G2(g) (II)

where B and C are solid products, G1 and G2 are
gaseous products and ν1 and ν2 are stoechiometric
coefficients.

A reaction order value which equals unity was con-
sidered for both (I) and (II) reactions. Let us suppose
the following activation parameters values:

reaction (I): E1 = 58.5 kJ · mol−1; A1 = 900 s−1;
reaction (II): E2 = 125.4 kJ · mol−1; A1 = 5.108 s−1.

For simplicity, we supposed that ν1 M1 = ν2 M2, where
M1 and M2 are molecular weights of G1 and G2. Un-
der such conditions, the total conversion degree, α, is
given by α = α1 + sα2

2 , where α1 is the conversion degree
corresponding to reaction I and α2—the conversion de-
gree corresponding to reaction II. The procedure for
obtaining the TG curves is shown in ref. 10. The TG
curves were simulated for the following heating rates:
3; 3.5; 4; 4.5; 5; 6; 7; 8; 10; 12 and 15 K · min−1. For
all these heating rates the DTG curves ( dα

dT vs. T ) ex-
hibits only one maximum. Consequently, a summary
analysis of the TG data leads to the conclusion that
these correspond to a single reaction. Assuming that
the whole process is kinetically described by only one
triplet (E, A, f (α)), i.e. the rate equation is given by
relation (1), the dependence of the apparent activation
energy on the conversion degree was determined by
help of the mentioned isoconversional methods. From
Fig. 2 it turns out that:

Figure 2 Dependences E vs. α for simulated TG curves corresponding
to two consecutive reactions. T EFR; • EFWO; � EKAS; � ELT for
α1 = 0.

Figure 3 Dependences ELT vs. α for various values α1 of (simulated
TG curves corresponding to two consecutive reactions).

– the values of the apparent activation energy de-
pend on the conversion degree;

– for a given value of α, EFR > EFWO ≈ EKAS >

ELT;
– for 0.25 ≤ α ≤ 0.80, the relative deviations of

EFWO, EKAS and ELT with respect to EFR are relatively
high (|e%| > 10%).

Fig. 3 shows the dependence ELT vs. α obtained for
α1 = 0; 0.05; 0.1; 0.2 and 0.3. As ELT increases with
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Figure 4 Dependences E vs. α for the thermal decomposition of smith-
sonite.

α, for a given value of α, ELT increases with α1. This
confirms observations from the previous paragraph.

4.3. TG curves obtained by Gotor et al. [11]
for the thermal dissociation of
smithsonite

The experimental conditions for recording the TG
curves corresponding to the thermal dissociation of
smithsonite were shown in reference 11. The applied
heating rates were 0.12; 0.57; 2.05; 4.11; 6.1 and
8.06 K · min−1.

Fig. 4 shows the curves E = E(α), for the values of
the activation energy estimated by various isoconver-
sional methods.
For the presented data one can see that:

– for 0.1 ≤ α ≤ 0.25, EFWO and EKAS decrease with
α, while EFR and ELT increase with α on the whole
range of α;

– for a given value of α, ELT increases with α1;
– for a given value of α, the deviations of ELT with

respect to EFWO, EKAS and respectively EFR decrease
with α1.

All the applied methods gave acceptable but rela-
tively high errors in E (±8% - ±9%), showing that the
investigated process is rather complex.

Removing the rate of 0.12 K · min−1, we obtained, by
all methods, practically the same value of the activation
energy (152.0 kJ · mol−1 − 159.5 kJ · mol−1) which for
α ≥ 0.2 does not depend on the conversion degree. This
could be explained either by the change of the reac-
tion mechanism at the transition from 0.12 K · min−1

to 0.57 K · min−1, or by the change of mechanism from
the relatively low temperatures characteristic for the in-
vestigated reaction at 0.12 K · min−1 at higher tempera-

tures corresponding to β ≥ 0.57 K · min−1. The fact that
values close to E ≈ 155 kJ · mol−1 were obtained using
the FWO, KAS, FR and LT (for α1 = 0.35) methods
for α ≥ 0.75 considering all the heating rates suggests
that the second explanation is valid. These values of α

correspond to T ≥ 680 K, i.e. T ≈ 680 K is the transi-
tion temperature from one mechanism to the other one.
This interpretation agrees with that given by Gotor et
al. [11] through analysis of TG and CRTA data.

5. Conclusions
1. It was shown that if the activation energy does not
depend on the conversion degree, the isoconversional
method suggested by Li and Tang can be used can be
used in order to determine the analytical form of the
differential conversion function.

2. It was equally shown that in the cases when the
activation energy depends on the conversion degree, the
values of the activation energy obtained by applying Li
and Tang’s method depend on the lower limit of the in-
tegrals required by it. This is one reason for we consider
that this method is not suitable to find the dependence
E = E(α).

3. The suggested criterion to obtain the analytical
form of f (α) was checked for simulated TG curves
corresponding to only one decomposition reaction.

4. For the simulated TG curves corresponding to two
consecutive reactions as well as for the TG curves ob-
tained at the investigation of the thermal dissociation
of smithsonite, using various isoconversional methods,
the dependencies E = E(α) were determined. In such
a way, it was checked that if E depends on α, when
applying Li and Tang’s method the value of the activa-
tion energy depends on the lower limit of the integrals
required by the method.
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